Bayesian Computation for the Superposition of Nonhomogeneous Poisson Processes

نویسندگان

  • Tae Young Yang
  • Lynn Kuo
چکیده

Bayesian inference for the superposition of nonhomogeneous Poisson processes is studied. A Markov chain Monte Carlo method with data augmentation is developed to compute the features of the posterior distribution. For each observed failure epoch, we introduce a latent variable that indicates which component of the superposition model gives rise to the failure. This data augmentation approach facilitates speciication of the transitional measure in the Markov chain. The Bayes estimate of the predictive survival function is given. Model selection based on the posterior Bayes factor is studied. A numerical example is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Computation for the Superposition ofNonhomogeneous Poisson

Bayesian inference for the superposition of nonhomogeneous Poisson processes is studied. A Markov chain Monte Carlo method with data augmentation is developed to compute the features of the posterior distribution. For each observed failure epoch, a latent variable is introduced that indicates which component of the superposition model gives rise to the failure. This data augmentation approach f...

متن کامل

Exact Statistical Inference for Some Parametric Nonhomogeneous Poisson Processes

Nonhomogeneous Poisson processes (NHPPs) are often used to model recurrent events, and there is thus a need to check model fit for such models. We study the problem of obtaining exact goodness-of-fit tests for certain parametric NHPPs, using a method based on Monte Carlo simulation conditional on sufficient statistics. A closely related way of obtaining exact confidence intervals in parametri...

متن کامل

Bayesian paradigm for analysing count data in longitudina studies using Poisson-generalized log-gamma model

In analyzing longitudinal data with counted responses, normal distribution is usually used for distribution of the random efffects. However, in some applications random effects may not be normally distributed. Misspecification of this distribution may cause reduction of efficiency of estimators. In this paper, a generalized log-gamma distribution is used for the random effects which includes th...

متن کامل

Bayesian Nonparametric Inference for Nonhomogeneous Poisson Processes

Several classes of nonparametric priors are employed to model the rate of occurrence of failures of the nonhomogeneous Poisson process used in software reliability or in repairable systems. The classes include the gamma process prior, the beta process prior, and the extended gamma process prior. We derive the posterior distribution for each process. Sampling based methods are developed for Baye...

متن کامل

Poisson-Lindley INAR(1) Processes: Some Estimation and Forecasting Methods

This paper focuses on different methods of estimation and forecasting in first-order integer-valued autoregressive processes with Poisson-Lindley (PLINAR(1)) marginal distribution. For this purpose, the parameters of the model are estimated using Whittle, maximum empirical likelihood and sieve bootstrap methods. Moreover, Bayesian and sieve bootstrap forecasting methods are proposed and predict...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995